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Measurements and simulations indicate that the particle-pair radial distribution function in isotropic turbu-
lence is a power law in a range of length scales below the Kolmogorov scale for Stokes number St�1. In this
range, the exponent is proportional to St1St2 for unlike particles �1 and 2� in a bidispersion, hence St2 for a
monodispersion. Here, this result is derived from a model of particle response to random advection. The
analysis generalizes a geometrical interpretation of clustering to polydispersions and suggests an economical
Monte Carlo simulation method.
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The number density of inertial particles, unlike the fluid
density in incompressible flow, can develop flow-induced
fluctuations �1�. The consequent clustering of low-inertia
particles in turbulence is sensitive to intermittency properties
�2–4� and is believed to enhance droplet coagulation leading
to rain formation �5�. Clustering has been the subject of ex-
perimental �6�, analytical �2,3�, computational �4,7,8�, and
modeling �8,9� studies. One focus has been the flow-property
dependencies of the coefficient C in the relation

g�r� � r−CSt2, a � r � � �1�

that is found to be obeyed to leading order in St�1 by the
particle-pair radial distribution function �RDF� g�r� for a
monodispersion �8,9�. Here, a is the particle radius, � is the
Kolmogorov microscale, and St is the Stokes number, de-
fined as the ratio of the particle response time to the turbu-
lence time scale �� /��1/2, where � is the energy dissipation
rate and � is the kinematic viscosity. Local flow-field linear-
ity is assumed in deriving �1�, but for unlike particles �1 and
2� in a bidispersion, a model that invokes departures from
linearity gives �8�

g�r� � r−CSt1St2
a

�
� �St1 − St2� �

r

�
� 1. �2�

�The lower bound on r was previously noted �3�, and an
analogous regime transition for high-inertia bidispersions has
been identified �10�.�

Here, a stochastic model that idealizes low-St particle re-
sponse to turbulence is formulated. For St1�1 and St1 /St2 of
order unity, the leading-order relation �2� is derived without
further approximation. This indicates that the idealized
model may be useful for Monte Carlo simulation as well as
for clarifying the origin of clustering.

Particle motion is idealized as a sequence of instantaneous
displacements based on representations of fluid displace-
ments and particle response. A one-dimensional �1D� spatial
domain is first assumed, and then the higher-dimensional
analysis is outlined.

In 1D, the kth fluid displacement is defined as a transfor-
mation x→x��x�=x+dk�x� of the spatial coordinate x. To
represent incompressible flow, this transformation must be

measure preserving, i.e., ���dx�=��dx for any subset � of x,
where �� is the image of the subset � after displacement k.
The displacement rule adopted here,

dk�x� =�
2

3
�xk − x� if xk � x��x� � xk +

1

3
l ,

2

3
�2xk − 2x + l� if xk +

l

3
l � x��x� � xk +

2

3
l ,

2

3
�xk − x + l� if xk +

2

3
l � x��x� � xk + l ,

0 otherwise,

�3�

obeys this property. In Eq. �3�, xk is a random variable that is
uniformly sampled within a 1D domain of nominal length 2X
with periodic boundary conditions applied, yielding a spa-
tially homogeneous displacement sequence. The parameter l
is a random variable sampled for given k from a specified
probability density function �PDF� f�l�. Termed the “triplet
map” in other contexts �see �11,12� for a graphical illustra-
tion and equivalent mathematical definitions�, dk is a triple-
valued function of x in �xk ,xk+ l�. Namely, the first three
lines of Eq. �3� define “images” j=1, 2, and 3 of �xk ,xk+ l�,
but the preimage x of fluid displaced to location x� is unique.
�In this context, �� in the incompressibility condition is the
union of the images of �.� Therefore, the inverse x�x��
is uniquely defined. It obeys the continuity relation
�x�x1��−x�x2�� � �3 �x1�−x2��. �Here, subscripts denote particular
values of x� rather than particular displacements.� This
assures that the displacement operation does not introduce
spatial discontinuities into a continuous function, i.e.,
h�x��	g�x�x��� is continuous in x� if g�x� is continuous in x.
In addition to their formal connection to multidimensional
fluid motion, measure preservation and continuity as defined
here have a direct bearing on the particle-clustering proper-
ties of present interest, as shown in a more general analysis
of clustering induced by d-dimensional maps �13�.

To generalize Eq. �3� to three dimensions, choose a line
with random orientation �sampled uniformly in solid angle,
to enforce isotropy� and define Cartesian coordinates
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x	�x ,y ,z� with the chosen line as the x axis. Now, Eq. �3�
prescribes x-directed displacements, with y and z values un-
affected, thus displacing planes rather than points. For gen-
eral d, the term d-map will denote such displacement of
�d−1�-dimensional hyperplanes in d-dimensional space.

Particle displacements Dk are modeled as

Dk�x� = �1 + S�dk�x� , �4�

where �S� will be interpreted as a particle Stokes number. S is
allowed to be different for different particles and for different
displacements k of a given particle. Its sign is immaterial
provided that it is the same for all particles because Eq. �2� is
bilinear in S1 and S2. Positive S has intuitive appeal because
it gives net particle transfer from the central region of the
mapped interval toward the periphery, consistent with par-
ticle expulsion from high-vorticity regions and accumulation
in high-strain regions �1�. Statistics not considered here, e.g.,
three-point correlations, may be sensitive to the sign of S and
thus indicate a preference.

In Eq. �4�, boldface indicates a d-dimensional vector.
d=1 is now considered.

It is assumed that dk in Eq. �4� is obtained by randomly
sampling, with equal probability, one of the three choices
specified by Eq. �3�, where the sampling is independent for
each particle in �xk ,xk+ l� and each event k. Thus, both the
dispersive �extensional� and compressive effects on particle
clustering are represented; displacements to a given image
are compressive, i.e., they reduce separations, while dis-
placements to different images are primarily dispersive.

The linearization of the particle drag law for small St
suggests slip velocities of order St times fluid velocities,
hence Eq. �4�, but the ultimate justification of Eq. �4� is the
resulting clustering behavior. The analog of Eq. �4� for
continuous-in-time flow is V= �1+S�v, implying � ·V=0 for
fixed S if � ·v=0, where V and v are the particle-field and
fluid velocities, respectively. This is contrary to the exact �for
low St� result that � ·V can be nonzero for � ·v=0, implying
inertia-induced clustering �1�. Thus, Eq. �4� is useful for ana-
lyzing clustering only in conjunction with an advection
model like Eq. �3�.

For d=1, consider the two-point probability p�x ,r�, where
p�x ,r�dxdr is the probability of finding a particle, labelled 1,
in �x ,x+dx� and a particle, labelled 2, in �x+r ,x+r+dr�. S
values are denoted Si for particles i=1 and 2. S1�S2 corre-
sponds to the previously analyzed bidispersion �8�. In homo-
geneous flow, p�x ,r� is independent of x so it is written as
p�r�. p�r� is proportional to g�r� and therefore is equally
suitable for analysis �14�. Fixed l is considered initially �i.e.,
f�l� is a �-function�. The finite-particle-size effects indicated
by the lower bounds of Eqs. �1� and �2� are omitted for
brevity.

pk�r� denotes p�r� evaluated as an ensemble averaged �or
x averaged� property of the system at a given stage of evo-
lution, meaning after some number k of displacements start-
ing from a given initial state. Homogeneity on the periodic
domain allows conservation of probability to be expressed as

p��r���dx�dr�� = �2X�−1

−X

X

dxk
pk−1�r�r�,xk��

M1M2

��dx�r�,xk�dr�r�,xk�� , �5�

where xk controls the x range of event-k fluid displacements
�i.e., it is not a particle location�, and quantities evaluated
after event k are denoted with primes instead of subscript
k. Particles 1 and 2 are assumed to reside at x1�	x�=0 and
x2�	r�	0, respectively, after event k, without loss of
generality.

Unprimed quantities expressed as functions of primed
quantities are uniquely prescribed by Eqs. �3� and �4�. dx and
dr are the “particle preimages” of dx� and dr�, meaning that
they are the x ranges of particles that are mapped into the
corresponding primed intervals by event k. �For S=0, these
correspond to “fluid pre-images”. Now S denotes S1 or S2
generically; it is assumed that S�1 and that S1 /S2 is of order
unity.�

If particle i is in �xk ,xk+ l� before event k, then it is
mapped to one of three locations, each with probability 1 /3.
To conserve probability, this requires pk−1 in Eq. �5� to be
divided by M1M2, where multiplicity Mi is 3 �1� if particle i
is inside �outside� �xk ,xk+ l� before event k.

For large enough k, relaxation to statistical stationarity is
assumed, implying p�= pk−1, so they are both denoted as p.
With this assumption, the ansatz p�r�=
 �r�−� is adopted, and
Eq. �5� is used to evaluate ��1 to leading order in S. Equa-
tion �5� is now homogeneous in p, so the prefactor 
 cancels.

 is determined by the normalization of p, but the ansatz is
valid only for �S1−S2 � l�r� l, so 
 is not determined here.
�In this regard, l is analogous to � in Eq. �2�; see below.�

For 1� j�3, let dk
�j� denote the jth expression for dk in

Eq. �3�, and let �j� designate a “P-image” �particle image�,
i.e., the xi� range generated by Eq. �4�, based on dk

�j� applied
to xi in �xk ,xk+ l�. j=0 and 4 denote P-images −X�xi��xk

and xk+ l�xi��X, respectively �in which xi�=xi�. Writing
dk

�j�=a�j�x+b�j�, Eq. �3� gives, in ascending order from j=0,

a�j� = 0, −
2

3
, −

4

3
, −

2

3
, 0,

b�j� = 0,
2

3
xk,

2

3
�l + 2xk�,

2

3
�l + xk�, 0.

�6�

For particles i=1 and 2, Eq. �4� gives

xi� = �1 + �1 + Si�ai�xi + �1 + Si�bi, �7�

where ai denotes “a�j� for the index j of the P-image to which
particle i is displaced.” Equation �7� allows r=x2−x1 �which
can be negative� to be expressed as

r =
r�

1 + �1 + S2�a2
+

�1 + S1�b1

1 + �1 + S1�a1
−

�1 + S2�b2

1 + �1 + S2�a2
. �8�

Owing to the assumptions x1�=0 �used to obtain Eq. �8��,
x2�	r�	0, S�1, and r�� l, particles 1 and 2 are mapped
either to the same P-image or to adjacent P-images in as-
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cending order, giving nine possible P-image combinations
for the particle pair: �j , j� for j=0 through 4 and �j , j+1� for
j=0 through 3. Based on Eqs. �3� and �4�, the boundaries of
the five P-images into which particle i may be mapped
�depending on the value of xk� are at xi� values −X, xk, xk
+ �1−2Si��l /3�, xk+ �1+Si��2l /3�, xk+ l, and X.

To integrate over dxk in Eq. �5�, the xk values at which
transitions between P-images occur as xk varies for x1�	0
and fixed r are expressed in terms of r� and l. For r�� l, the
possible P-image combinations, interleaved with the xk
values of the transitions between the possible combinations,
are −X, �4,4�, −l, �3,4�, r�− l, �3,3�, −�1+S1��2l /3�,
�2,3�, r�− �1+S2��2l /3�, �2,2�, −�1−2S1��l /3�, �1,2�,
r�− �1−2S2��l /3�, �1,1�, 0, �0,1�, r�, �0,0�, X. ±X are in-
cluded to fully specify the partitioning of the dxk integration
into one sub-interval �x−

�m,n� ,x+
�m,n�� per P-image combination

�m ,n�. Note however that the endpoints ±X are immaterial
owing to periodicity, e.g., the case xk	X− l requires no spe-
cial treatment.

The integral in Eq. �5� is partitioned accordingly. Invok-
ing stationarity and dividing Eq. �5� by p�R�� �dx�dr��,

�
cases

I�m,n��r�� = 1 �9�

is obtained, where “cases” refers to the xk sub-intervals
�x−

�m,n� ,x+
�m,n��, and

I�m,n��r�� =
J�m,n�

2X



x−
�m,n�

x+
�m,n�

dxk p�r�r�,xk��/p�r�� , �10�

J�m,n� =
1

M1M2
� dx

dx�
�� dr

dr�
� , �11�

where arguments and some indices are suppressed on the
right-hand side of Eq. �11�.

J�m,n� is outside the integral in Eq. �10� because the
particle-i multiplicities Mi and the dilatation ratios �dx /dx��
and �dr /dr�� depend only on the indices m and n. Namely,
Mi=3 for images 1, 2, and 3 �i.e., for any displaced particle�,
otherwise �outside the mapped region� Mi=1. According
to Eq. �8�, �dr /dr� � =1/ �1+ �1+S2�a2�, and analogously,
�dx /dx� � =1/ �1+ �1+S1�a1�. Again, ai is the a�j� value of Eq.
�6� corresponding to the image �j� into which particle i is
mapped. These relations apply whether particle i is inside or
outside the mapped region; if the latter �image index j=0 or
4�, then the dilatation ratio is unity.

Assuming p�r���r�−�, p�r� / p�r�� in Eq. �10� becomes
�r̂�−�
1−� ln � r̂ � +. . ., where r̂	r /r�. For m=n=1, 2, or 3,

I�m,m��r�� 

J�m,m�

2X
�x+

�m,m� − x−
�m,m���1 − � ln 3� . �12�

Here, quantities multiplying the order-� term are evaluated to
leading order, e.g., �r̂ � 
3 based on Eq. �8�, which suffices to
evaluate � to leading order. This eliminates xk dependence in
the integrand of Eq. �10�, yielding Eq. �12�.

The expansion of �r̂�−� in � is valid only for r̂�0. There
are two ways to obtain r�	0 for r=0, hence r̂=0. One way
requires S1�S2, allowing two initially collocated particles to

separate due to their different displacements. Based on
Eq. �4�, the resulting separation r� cannot exceed order
�S1−S2 � l. Here, r� is restricted to the range �S1−S2 � l�r�
� l because processes at particle separations of order
�S1−S2 � l cause deviations from Eq. �2�. Namely, particle
relative motion due to S1�S2 causes particle trajectory deco-
rrelation to dominate clustering, so p�r�� becomes indepen-
dent of r� for r�� �S1−S2 � l �8�.

The other way to obtain r�	0 for r=0 does not require
S1�S2. It is the mapping of initially collocated particles to
different images, i.e., the cases �m ,n� for m�n. However,
the consequent singularity is weak enough so that its contri-
bution to the dxk integral is negligible �13�. In fact, the �
dependence is also negligible for m�n, so to a sufficient
approximation,

I�m,n��r�� 

J�m,n�

2X
�x+

�m,n� − x−
�m,n�� . �13�

Noting that cases �0,0� and �4,4� are trivial, the forego-
ing reduces Eq. �9� to an algebraic equation, giving the
leading-order result �13�

� = �4/ln 3���S1
2 + S2

2� − �S1 − S2�2� = 7.3S1S2. �14�

The two terms inside the square brackets are the contribu-
tions of the m=n and m�n cases, respectively. The m�n
contribution is nonzero only if S1�S2. A physical distinction
between these two contributions is that the first represents
particle response to a linear flow, but the second includes
nonlinear effects. The triplet map is piecewise-linear; linear-
ity holds only for displacements to a given image, i.e., for
m=n. Analogously, �8� shows that a linear mechanism ac-
counts for the scaling of � for S1=S2, but that nonlinear
effects must be invoked for S1�S2.

Several model extensions �13� are summarized. For
d	1, the ensemble of possible events is generalized to allow
averaging over the relative orientation of the map direction x
and the postmap particle-separation vector. r̂ now includes a
contribution orthogonal to x �which is not affected by the
map�, and hence depends on the orientation angle. This de-
pendence modifies the order-� term in the generalization of
Eq. �12�. �This term contributes to leading order to the inte-
gral over the orientation distribution.� This is the only
leading-order modification of the analysis for d	1. Instead
of the value 7.3 in Eq. �14�, the values 11.5 for d=2, and 15
for d=3, are obtained, i.e., � increases with d.

It might seem that particle relative motion in 1D, being
aligned with the particle separation vector, would induce
more clustering than for d	1. However, dispersion �map-
ping to different images� and convergence �mapping to a
given image� are both more effective for d=1. The net clus-
tering is the high-order residual obtained after cancellation of
the lower-order effects of convergence and dispersion.

Increase of � with increasing d can be understood using
the following approach: Only allow maps aligned with the
respective Cartesian coordinate directions. Now, p�r� is an-
isotropic but the orientation average p̄�r� is isotropic.

Consider the probability p1�xi�, analogous to p�r� but
where xi is the projection of particle separation in the coor-
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dinate direction i. The x1 separation is unaffected by
xi-directed maps for i�1, and the effect of the x1 maps on
p1�x1� is the same as in a 1D �x1-directed� geometry. There-
fore, p1�x1� obeys the result �14� derived for d=1.

Assume that map occurrences in the respective directions
xi are statistically independent. This implies statistical inde-
pendence of particle motions in the respective coordinate di-
rections. It follows that p�r���i=1

d p1�xi�, and accounting for
anisotropy, the result p̄�r��r−d�1 is obtained �13�, where �1 is
the 1D exponent value given by Eq. �14�.

This shows how the increase of clustering with increasing
d can arise within the present framework, although the physi-
cal correctness of this trend remains undetermined. In any
case, this anisotropic formulation is of practical interest be-
cause it can be implemented numerically on a periodic Car-
tesian domain, as noted shortly.

An ensemble of possible l values governed by the PDF
f�l� is accommodated by an averaging procedure much like
the treatment of d-dimensional orientation �13�, giving
�S1S2l� / �l� in place of S1S2 in Eq. �14�, where angle brackets
denote averaging over f�l�, and l dependence of S1 and S2 is
allowed, enabling the interpretation of S as a Stokes number.
Equation �3� is the model analog of a notional eddy �vortical
turnover� in turbulence �11�. If f�l� is assigned the eddy size-
versus-frequency scaling of inertial-range turbulence within
the range �� ,L�, where L is the turbulence integral scale,
then the eddy time scale � can be estimated using the inertial-
range scaling �� l2/3 �15�. For given particle response time
tp, the assignment S=CStp /� defines an l-dependent “eddy
Stokes number,” involving a coefficient CS that can be as-
signed empirically by requiring the model exponent � to
match known values, e.g., from direct numerical simulations
�4,8�. To capture accurately the dependence of clustering on
L /� �and thus on turbulence intensity, parameterized by
Re��L /��4/3�, f�l� and ��l� are modified to emulate inter-
mittency �13�. �A more general approach that determines

event size and location dynamically based on a representa-
tion of the instantaneous flow state is described in �12�.�

Thus, the model has practical as well as conceptual impli-
cations. It obeys Eqs. �1� and �2�, satisfying a key require-
ment for accurate numerical simulation of particle collisions
and �for droplets� coalescence in turbulence �7�. No spatial
mesh is required, only a list of particle parameters �including
spatial locations� that is updated by displacements. In the
absence of processes requiring explicitly defined time evolu-
tion �e.g., differential sedimentation�, this Lagrangian algo-
rithm is no more costly than the Gillespie algorithm �16�, a
coalescence simulation that involves weighted sampling of
droplet pairs and takes no account of droplet locations. The
new method captures spatial evolution, including �as shown
here� the clustering mechanism that can increase coalescence
rates of initially monodisperse droplets by a factor of 10 or
more �7�. Numerical simulation results, and their implica-
tions for rain formation, are discussed elsewhere �13�.

The present analysis employs a geometrical construction,
Eqs. �3� and �4�, that does not follow directly from the evo-
lution equations governing particles in turbulent flow, yet
reproduces the scaling that governs clustering in bidisper-
sions �including any bidisperse sub-population within a gen-
eral polydispersion� for �S1−S2 ���r��. This geometrical
treatment generalizes the geometrical perspective applied to
monodispersions in �2�.
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